Neurociência
A
neurociência é o estudo da realização física
do processo de informação no sistema nervoso humano animal e humano.
O estudo da neurociência engloba três áreas principais: a
neurofisiologia, a neuroanatomia e neuropsicologia.
A
neurofisiologia é o estudo das funções do sistema nervoso.
Ela utiliza eletrodos para estimular e gravar a reação das células
nervosas ou de área maiores do cérebro. Ocasionalmente, separaram
as conexões nervosas para avaliar os resultados.
A
neuroanatomia é o estudo da estrutura do sistema nervoso, em nível
microscópico e macroscópico. Os neuroanatomistas dissecam o cérebro,
a coluna vertebral e os nervos periféricos fora dessa estrutura.
A neuropsicologia é o estudo da relação entre as funções neurais e psicológicas. A principal pergunta da neuropsicologia é qual área específica do cérebro controla ou media as funções psicológicas. O principal método de estudo usado pelos neuropsicólogos é o estudo do comportamento ou mudanças cognitivas que acompanham lesões em partes específicas do cérebro. Estudos experimentais com indivíduos normais também são comuns.
Estrutura e funcionamento do sistema nervoso
Observando
a estrutura do sistema nervoso, percebemos que eles têm partes situadas
dentro do cérebro e da coluna vertebral e outras distribuídas
por todo corpo. As primeiras recebem o nome coletivo de sistema nervoso central
(SNC), e as últimas de sistema nervoso periférico (SNP). É
no sistema nervoso central que está a grande maioria das células
nervosas, seus prolongamentos e os contatos que fazem entre si. No sistema nervoso
periférico estão relativamente poucas células, mas um grande
número de prolongamentos chamados fibras nervosas, agrupados em filetes
alongados chamados nervos.
Os
nervos (conjunto de neurônios) podem ser divididos em nervos que levam
informação para o SNC e nervos que levam informação
do SNC. Os primeiros são chamados fibras aferentes e os últimos
de fibras eferentes. As fibras aferentes enviam sinais dos receptores (células
que respondem ao estímulo sensorial nos olhos, ouvidos, pele, nariz,
músculos, articulações) para o SNC. As fibras eferentes
enviam sinais do SNC para os músculos e as glândulas.
Os
neurônios são formados por três partes: a soma, os axônios
e os dendritos. A parte central, corpo celular ou soma, contém o núcleo
celular. Pode-se observar que a soma possui grande número de prolongamentos,
ramificando-se múltiplas vezes como pequenos arbustos, são os
dendritos. É através dos dendritos que cada neurônio recebe
as informações provenientes dos demais neurônios a que se
associa. O grande número de neurônios é útil a célula
nervosa, pois permite multiplicar a área disponível para receber
as informações aferentes. Saindo da soma também, existe
um filamento mais longo e fino, ramificando-se pouco no trajeto e muito na sua
porção terminal, é o axônio. Cada neurônio
tem um único axônio, e é por ele que saem as informações
eferentes dirigidas às outras células de um circuito neural.
A
região de contato entre um terminal de fibra nervosa e um dendrito ou
o corpo (mais raramente um outro axônio) de uma segunda célula,
chama-se sinapse, e constitui uma região especializada fundamental para
o processamento da informação pelo sistema nervoso. Na sinapse,
nem sempre, os sinais elétricos passam sem alteração, podem
ser bloqueados parcial ou completamente, ou então multiplicados. Logo,
não ocorre apenas uma transmissão da informação,
mas uma transformação durante a passagem.
A
transmissão sináptica pode ser química ou elétrica.
Na sinapse elétrica, as correntes iônicas passam diretamente pelas
junções comunicantes (região de aproximação
entre duas células) para as outras células. A transmissão
é ultra-rápida, já que o sinal passa praticamente inalterado
de uma célula para outra. Na sinapse química, a transmissão
do sinal através da fenda sináptica (região de aproximação
entre duas células, bem maior que as junções comunicantes)
é feita através de neurotransmissores. A sinapse química
pode ser exitatória, quando ocorre um aumento no estímulo recebido
pelo neurônio pós-sináptico, ou inibitória, quando
ocorre uma diminuição do estímulo no neurônio pós-sináptico.
São essas transformações ocorridas durante a sinapse que
garantem ao sistema nervoso a sua enorme diversidade e capacidade de processamento
de informação
Uma das melhores maneiras de perceber a influência dos neurotransmissores na cognição é observando a quantidade de drogas cujo efeito provêm da modificação da atividade dos neurotransmissores, como a nicotina.
Plasticidade
Plasticidade
é a capacidade do sistema nervoso alterar o funcionamento do sistema
motor e perceptivo baseado em mudanças no ambiente.
Estudos
comprovam a hipótese sobre o desenvolvimento neural e a aprendizagem
na qual funções particulares de processamento de informação
são controladas por grupos especiais de neurônios, mas quando uma
dessas funções fica inutilizada, os neurônios associados
a ela passam a controlar outra função. Por exemplo, se os neurônios
que normalmente recebiam estímulos do olho esquerdo pararem de receber
esse estímulo, eles se tornariam responsáveis pelos estímulos
do olho direito. O inverso também é verdadeiro, quando as funções
neurais são limitadas, os neurônios podem passar a controlar novas
funções.
No entanto, nem sempre esse processo ocorre. A plasticidade é mais comum em crianças.
Memória de curto e longo prazo
Um dos conceitos mais importantes dessa área é a distinção entre memória de curto e longo prazo. Uma razão para acreditar nessa distinção é que, algumas vezes depois de um severo golpe na cabeça, uma pessoa pode ser incapaz de lembrar eventos que aconteceram antes do golpe (amnésia retrógrada), mas continuaria lembrando dos eventos que ocorreram bem antes. A fragilidade das memórias recentes sugeri que elas estavam num estado fisiológico diferente das memórias mais antigas. Uma outra razão para essa distinção é que nós somos capazes de lembrar um pequeno número de itens que nós acabamos de guardar na memória, mas podemos lembrar uma grande quantidade de informação de um passado distante. Esses fatos sugerem que a memória de curto prazo e a memória de longo prazo podem ter propriedades físicas distintas.
Memória de Curto Prazo (MCP): Capaz de armazenar informações por períodos de tempo um pouco mais longos, mas também de capacidade relativamente limitada.
Memória de Longo Prazo (MLP): Capaz de estocar informações durante períodos de tempo muito longos, talvez até indefinidamente.
Linguagem e outras funções de alto nível
A área de Broca e área de Wernicke
Em 1861,o neurologista francês Paul Broca identificou um paciente que
era quase totalmente incapaz de falar e tinha uma lesão nos lobos frontais,
o que gerou questionamentos sobre a existência de um centro da linguagem
no cérebro. Mais tarde, descobriu casos nos quais a linguagem havia se
comprometido devido a lesões no lobo frontal do hemisfério esquerdo.
A recorrência dos casos levou Broca a propor, em 1864, que a expressão
da linguagem é controlada por apenas um hemisfério, quase sempre
o esquerdo. Esta visão confere com resultados do procedimento de Wada,
no qual um hemisfério cerebral é anestesiado. Na maioria dos casos,
a anestesia do hemisfério esquerdo, mas não a do direito, bloqueia
a fala. A área do lobo frontal esquerdo dominante que Broca identificou
como sendo crítico para a articulação da fala veio a ser
conhecida como área de Broca.(BEAR, 2002)
Em
1874, o neurologista Karl Wernicke identificou que lesões na superfície
superior do lobo temporal, entre o córtex auditivo e o giro angular,
também interrompiam a fala normal. Essa região é atualmente
denominada área de Wernicke. Tendo estabelecido que há duas áreas
de linguagem no hemisfério esquerdo, Wernicke e outros começaram
a mapear as áreas de processamento da linguagem no cérebro e levantaram
hipóteses acerca de interconexões entre córtex auditivo,
a área de Wernicke, a área de Broca e os músculos requeridos
para a fala.
"O
modelo neurolingüístico de Wernicke considerava que a área
de Broca conteria os programas motores de fala, ou seja, as memórias
do movimentos necessários para expressar os fonemas, compô-los
em palavras e estas em frases. A área de Wernicke, por outro lado, conteria
as memórias dos sons que compõem as palavras, possibilitando a
compreensão." (LENT, 2002, p. 637) Assim, se essas duas áreas
fossem conectadas, o indivíduo poderia associar a compreensão
das palavras ouvidas com a sua própria fala.
Atualmente, o modelo de Wernicke teve que ser corrigido quando se observou que pacientes com lesões bem restritas à porção posterior do giro temporal superior (a área de Wernicke) apresentavam na verdade uma surdez lingüística e não uma verdadeira afasia de compreensão. A área de Wernicke seria, então, responsável pela identificação das palavras e não da compreensão do seu significado.
Distúrbios da fala e da compreensão
Damos o nome de afasia a alguns dos distúrbios da linguagem falada causados por acidentes vasculares cerebrais na sua fase aguda. Entretanto, nem todos os distúrbios da linguagem podem ser chamados de afasia. São chamados de afasia apenas aqueles que atingem regiões realmente responsáveis pelo processamento da linguagem e não distúrbios do sistema motor, do sistema atencional, e outros que seriam apenas coadjuvantes do processo. Ao contrário de um doente que não consegue falar devido a paralisia de um nervo facial, os portadores de afasia podem apresentar problemas de linguagem sem ter qualquer problema no funcionamento muscular facial.
Segundo
Lent (2002), as afasias são classificadas em afasia de expressão,
de compreensão e de condução, de acordo com os sintomas
do paciente e com a região cerebral atingida.
A
afasia de Broca é também chamada de afasia motora ou não-fluente,
já que as pessoas têm dificuldade em falar mesmo que possam entender
a linguagem ouvida ou lida. Pessoas com esse tipo de afasia têm dificuldade
em dizer qualquer coisa, fazendo pausas para procurar a palavra certa (anomia).
A marca típica da afasia de Broca é um estilo telegráfico
de fala, no qual se empregam, principalmente, palavras de conteúdo (substantivos,
verbos, adjetivos), além da incapacidade de construir frases gramaticalmente
corretas (agramatismo). É provocada por lesões sobre a região
lateral inferior do lobo frontal esquerdo.
A
afasia de compreensão ou afasia de Wernicke atinge uma região
cortical posterior em torno da ponta do sulco lateral de Sylvius do lado esquerdo.
Os pacientes não conseguem compreender o que lhes é dito. Emitem
respostas verbais sem sentidos e também não conseguem demonstrar
compreensão através de gestos. Apesar de possuir uma fala fluente,
ela também não tem sentido pois não compreendem o que eles
mesmos dizem. Enquanto na afasia de Broca, a fala é perturbada, mas a
compreensão está intacta, na afasia de Wernicke, a fala é
fluente, mas a compreensão é pobre.
A afasia de condução é provocada por lesão do feixe arqueado, feixes que conectam a área de Broca com a área de Wernicke. Os pacientes seriam capazes de falar espontaneamente, embora cometessem erros de repetição e de resposta a comandos verbais.
Outros distúrbios
Afasia é apenas uma das desordens que resulta de lesões do cérebro. Neurologistas catalogaram um grande número de desordens. Abaixo temos uma pequena lista de algumas delas:
A especialização dos hemisférios
Apesar do nosso cérebro ser divido em dois hemisférios não
existe relação de dominância entre eles, pelo contrário,
eles trabalham em conjunto, utilizando-se dos milhões de fibras nervosas
que constituem as comissuras cerebrais e se encarregam de pô-los em constante
interação. O conceito de especialização hemisférica
se confunde com o de lateralidade (algumas funções são
representadas em apenas um dos lados, outras no dois) e de assimetria (um hemisfério
não é igual ao outro).
Segundo Lent (2002), o hemisfério esquerdo controla a fala em mais de 95% dos seres humanos, mais isso não quer dizer que o direito não trabalhe, ao contrário, é a prosódia do hemisfério direito que confere à fala nuances afetivas essenciais para a comunicação interpessoal. O hemisfério esquerdo é também responsável pela realização mental de cálculos matemáticos, pelo comando da escrita e pela compreensão dela através da leitura. Já o hemisfério direito é melhor na percepção de sons musicais e no reconhecimento de faces, especialmente quando se trata de aspectos gerais. O hemisfério esquerdo participa também do reconhecimento de faces, mas sua especialidade é descobrir precisamente quem é o dono de cada face. Da mesma forma, o hemisfério direito é especialmente capaz de identificar categorias gerais de objetos e seres vivos, mas é o esquerdo que detecta as categorias específicas. O hemisfério direito é melhor na detecção de relações espaciais, particularmente as relações métricas, quantificáveis, aquelas que são úteis para o nosso deslocamento no mundo. O hemisfério esquerdo não deixa de participar dessa função, mas é melhor no reconhecimento de relações espaciais categoriais qualitativas. Finalmente, o hemisfério esquerdo produz movimentos mais precisos da mão e da perna direitas do que o hemisfério direito é capaz de fazer com a mão e a perna esquerda (na maioria das pessoas). Veja a Figura 2.2:
Figura 2.2: Especialização dos hemisférios. (LENT, 2002)
Implicações nas Ciências Cognitivas
Existem redundâncias consideráveis no sistema nervoso. A existência de processamento paralelo é amplamente aceita na neurociência e acredita-se que ele seja necessário devido a rapidez e complexidade do processamento da informação no cérebro das criaturas vivas. O poder da computação paralela pode ser observado nos modernos computadores seriais que demoram muito mais que o cérebro humano para processar informações visuais. Nos últimos anos, reconheceu-se que computadores com processamento paralelo são necessários para acelerar o processamento de imagens, aproximando-o da velocidade do cérebro humano.
Esse é um dos caminhos pelo qual a neurociência pode ajudar as ciências cognitivas. A psicologia cognitiva tem se esforçado para modelar as atividades intelectuais com elementos que interajam numa maneira neurologicamente plausível. Esses modelos estão ajudando a mostrar como a cognição pode ser estruturada através dos princípios básicos de operação da mente.
Para saber mais:
Livros e publicações:
BEAR, Mark F.; CONNORS, Barry W.; PARADISO, Michael A. Neurociências: desvendando o sistema nervoso. 2. ed. Porto Alegre: Artmed, 2002.
BRITO, Denise Brandão de Oliveira e.Retardo de Aquisição de Linguagem. Disponível em: <http://www.denisebrandao.hpg.ig.com.br/index.html>. Acessado em 18 ago. 2002.
GARDNER, Howard. A nova ciência da mente. São Paulo: Editora da Universidade de São Paulo, 1996.
LENT, Roberto. Cem bilhões de neurônios: conceitos fundamentais. Atheneu: São Paulo, 2002.
MYRES, David G. Introdução à psicologia geral. 5. ed. Rio de Janeiro: Livros Técnicos e Científicos, 1999.
NOGUEIRA, Suzana et all. A criança com atraso da linguagem. Disponível em: <http://www.chc.min-saude.pt/hp/revista/042000/artigo.pdf>. Acessado em 18 ago. 2002.
STILLINGS, Neil A. Cognitive Science: an introduction. Cambridge: Massachusetts Institute of Technology, 1989.
STENBERG, Robert J. Psicologia Cognitiva. Porto Alegre: Artmed, 2000.
Links:
Página com o material do curso de "Memória: representação do conhecimento, uma abordagem cognitiva" oferecido pela professora Adriana Benevides do Núcleo de Computacão Eletrônica da UFRJ.
http://www.epub.org.br/cm/home.htm
Página da revista "Mente e Cérebro" com artigos relacionados à neurociência.
http://www.gomestranslation.com/
Traduções
em geral e pesquisa em neurociência, linguagem, cognição
e disciplinas correlatas.
http://human-nature.com/rmyoung/papers/index.html
Página do psicólogo Robert Maxwell Young com artigos publicados desde 1960, além de livros na íntegra.
http://psychclassics.yorku.ca/author.htm
"Classics in the History of Psychology", página em ingl6es com publicações de vários estudiosos, como Skinner, Broca, Koffka e Lashey.
http://bob.nap.edu/html/howpeople1/index.html
"How People Learn: Brain, Mind, Experience, and School". Livro online de John D. Bransford, Ann L. Brown e Rodney R. Cocking (editores).
http://www.sedl.org/scimath/compass
Página em inglês chamada "Classroom compass", com idéias, atividades e recursos para professores interessados em melhorar suas aulas de matemática e ciências. Incluindo o artigo "Research on brain", sobre com estudos da mente podem ajudar no aprendizado.
http://www.datasus.gov.br/cid10/webhelp/f80.htm
Página sobre
os "Transtornos específicos do desenvolvimento da fala e da linguagem".